Monday, December 27, 2010

Species

Rubus Berry Plants

Species


Species ~ Rubus Berry Plants
Picture Of

Rubus Berry Plants

Rubus Berry Plants

Species

In biology, a Species is one of the basic units of biological classification and a taxonomic rank. A species is often defined as a group of organisms capable of interbreeding and producing fertile offspring. While in many cases this definition is adequate, more precise or differing measures are often used, such as similarity of DNA, morphology or ecological niche. Presence of specific locally adapted traits may further subdivide species into subspecies.

The commonly used names for plant and animal taxa sometimes correspond to species: for example, "lion," "walrus," and "Camphor tree" – each refers to a species. In other cases common names do not: for example, "deer" refers to a Family of 34 species, including Eld's Deer, Red Deer and Elk (Wapiti). The last two species were once considered a single species, illustrating how species boundaries may change with increased scientific knowledge.

Each species is placed within a single Genus. This is a hypothesis that the species is more closely related to other species within its genus than to species of other genera. All species are given a binomial name consisting of the generic name and specific name (or specific epithet). For example, Boa constrictor, which is commonly called by its bionomial name, and is one of five species of the Boa genus.

A usable definition of the word "species" and reliable methods of identifying particular species are essential for stating and testing biological theories and for measuring biodiversity. Traditionally, multiple examples of a proposed species must be studied for unifying characters before it can be regarded as a species. Extinct species known only from fossils are generally difficult to assign precise taxonomic rankings.

Because of the difficulties with both defining and tallying the total numbers of different species in the world, it is estimated that there are anywhere between 2 and 100 million different species.


Biologists' working definition

A usable definition of the word "species" and reliable methods of identifying particular species is essential for stating and testing biological theories and for measuring biodiversity. Traditionally, multiple examples of a proposed species must be studied for unifying characters before it can be regarded as a species. It is generally difficult to give precise taxonomic rankings to extinct species known only from fossils.

Some biologists may view species as statistical phenomena, as opposed to the traditional idea, with a species seen as a class of organisms. In that case, a species is defined as a separately evolving lineage that forms a single gene pool. Although properties such as DNA-sequences and morphology are used to help separate closely related lineages, this definition has fuzzy boundaries. However, the exact definition of the term "species" is still controversial, particularly in prokaryotes, and this is called the species problem. Biologists have proposed a range of more precise definitions, but the definition used is a pragmatic choice that depends on the particularities of the species of concern.


Common names and species

The commonly used names for plant and animal taxa sometimes correspond to species: for example, "lion", "walrus", and "Camphor tree" – each refers to a species. In other cases common names do not: for example, "deer" refers to a family of 34 species, including Eld's Deer, Red Deer and Elk (Wapiti). The last two species were once considered a single species, illustrating how species boundaries may change with increased scientific knowledge.

Because of the difficulties with both defining and tallying the total numbers of different species in the world, it is estimated that there are anywhere between 2 and 100 million different species.


Abbreviated names

Books and articles sometimes intentionally do not identify species fully and use the abbreviation "sp." in the singular or "spp." in the plural in place of the specific epithet: for example, Canis sp. This commonly occurs in the following types of situations:

* The authors are confident that some individuals belong to a particular genus but are not sure to which exact species they belong. This is particularly common in paleontology.

* The authors use "spp." as a short way of saying that something applies to many species within a genus, but do not wish to say that it applies to all species within that genus. If scientists mean that something applies to all species within a genus, they use the genus name without the specific epithet.

In books and articles, genus and species names are usually printed in italics. If using "sp." and "spp.", these should not be italicized.



Definitions of species

The question of how best to define "species" is one that has occupied biologists for centuries, and the debate itself has become known as the species problem. Darwin wrote in chapter II of On the Origin of species:

No one definition has satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of a species. Generally the term includes the unknown element of a distinct act of creation.

But later, in The Descent of Man, when addressing "The question whether mankind consists of one or several species", Darwin revised his opinion to say:

it is a hopeless endeavour to decide this point on sound grounds, until some definition of the term "species" is generally accepted; and the definition must not include an element that cannot possibly be ascertained, such as an act of creation.

The modern theory of evolution depends on a fundamental redefinition of "species". Prior to Darwin, naturalists viewed species as ideal or general types, which could be exemplified by an ideal specimen bearing all the traits general to the species. Darwin's theories shifted attention from uniformity to variation and from the general to the particular. According to intellectual historian Louis Menand,

Once our attention is redirected to the individual, we need another way of making generalizations. We are no longer interested in the conformity of an individual to an ideal type; we are now interested in the relation of an individual to the other individuals with which it interacts. To generalize about groups of interacting individuals, we need to drop the language of types and essences, which is prescriptive (telling us what finches should be), and adopt the language of statistics and probability, which is predictive (telling us what the average finch, under specified conditions, is likely to do). Relations will be more important than categories; functions, which are variable, will be more important than purposes; transitions will be more important than boundaries; sequences will be more important than hierarchies.

This shift results in a new approach to "species"; Darwin

concluded that species are what they appear to be: ideas, which are provisionally useful for naming groups of interacting individuals. "I look at the term species", he wrote, "as one arbitrarily given for the sake of convenience to a set of individuals closely resembling each other ... It does not essentially differ from the word variety, which is given to less distinct and more fluctuating forms. The term variety, again, in comparison with mere individual differences, is also applied arbitrarily, and for convenience sake."

Practically, biologists define species as populations of organisms that have a high level of genetic similarity. This may reflect an adaptation to the same niche, and the transfer of genetic material from one individual to others, through a variety of possible means. The exact level of similarity used in such a definition is arbitrary, but this is the most common definition used for organisms that reproduce asexually (asexual reproduction), such as some plants and microorganisms.

This lack of any clear species concept in microbiology has led to some authors arguing that the term "species" is not useful when studying bacterial evolution. Instead they see genes as moving freely between even distantly related bacteria, with the entire bacterial domain being a single gene pool. Nevertheless, a kind of rule of thumb has been established, saying that species of Bacteria or Archaea with 16S rRNA gene sequences more similar than 97% to each other need to be checked by DNA-DNA Hybridization if they belong to the same species or not. This concept has been updated recently, saying that the border of 97% was too low and can be raised to 98.7%.

In the study of sexually reproducing organisms, where genetic material is shared through the process of reproduction, the ability of two organisms to interbreed and produce fertile offspring of both sexes is generally accepted as a simple indicator that the organisms share enough genes to be considered members of the same species. Thus a "species" is a group of interbreeding organisms.

This definition can be extended to say that a species is a group of organisms that could potentially interbreed – fish could still be classed as the same species even if they live in different lakes, as long as they could still interbreed were they ever to come into contact with each other. On the other hand, there are many examples of series of three or more distinct populations, where individuals of the population in the middle can interbreed with the populations to either side, but individuals of the populations on either side cannot interbreed. Thus, one could argue that these populations constitute a single species, or two distinct species. This is not a paradox; it is evidence that species are defined by gene frequencies, and thus have fuzzy boundaries.

Consequently, any single, universal definition of "species" is necessarily arbitrary. Instead, biologists have proposed a range of definitions; which definition a biologists uses is a pragmatic choice, depending on the particularities of that biologist's research.



Biological / Isolation species

A set of actually or potentially interbreeding populations. This is generally a useful formulation for scientists working with living examples of the higher taxa like mammals, fish, and birds, but more problematic for organisms that do not reproduce sexually. The results of breeding experiments done in artificial conditions may or may not reflect what would happen if the same organisms encountered each other in the wild, making it difficult to gauge whether or not the results of such experiments are meaningful in reference to natural populations.


Evolutionary / Darwinian species

A group of organisms that shares an ancestor; a lineage that maintains its integrity with respect to other lineages through both time and space. At some point in the progress of such a group, some members may diverge from the main population and evolve into a subspecies, a process that eventually will lead to the formation of a new full species if isolation (geographical or ecological) is maintained.


Importance in biological classification

The idea of species has a long history. It is one of the most important levels of classification, for several reasons:

* It often corresponds to what lay people treat as the different basic kinds of organism – dogs are one species, cats another.
* It is the standard binomial nomenclature (or trinomial nomenclature) by which scientists typically refer to organisms.
* It is the highest taxonomic level that cannot be made more or less inclusionary.

After years of use, the concept remains central to biology and a host of related fields, and yet also remains at times ill-defined.


Implications of assignment of species status

The naming of a particular species may be regarded as a hypothesis about the evolutionary relationships and distinguishability of that group of organisms. As further information comes to hand, the hypothesis may be confirmed or refuted. Sometimes, especially in the past when communication was more difficult, taxonomists working in isolation have given two distinct names to individual organisms later identified as the same species. When two named species are discovered to be of the same species, the older species name is usually retained, and the newer species name dropped, a process called synonymization, or colloquially, as lumping. Dividing a taxon into multiple, often new, taxons is called splitting. Taxonomists are often referred to as "lumpers" or "splitters" by their colleagues, depending on their personal approach to recognizing differences or commonalities between organisms (see lumpers and splitters).

Traditionally, researchers relied on observations of anatomical differences, and on observations of whether different populations were able to interbreed successfully, to distinguish species; both anatomy and breeding behavior are still important to assigning species status. As a result of the revolutionary (and still ongoing) advance in microbiological research techniques, including DNA analysis, in the last few decades, a great deal of additional knowledge about the differences and similarities between species has become available. Many populations formerly regarded as separate species are now considered a single taxon, and many formerly grouped populations have been split. Any taxonomic level (species, genus, family, etc.) can be synonymized or split, and at higher taxonomic levels, these revisions have been still more profound.

From a taxonomical point of view, groups within a species can be defined as being of a taxon hierarchically lower than a species. In zoology only the subspecies is used, while in botany the variety, subvariety, and form are used as well. In conservation biology, the concept of evolutionary significant units (ESU) is used, which may be define either species or smaller distinct population segments. Identifying and naming species is the providence of alpha taxonomy.


Related : Rubus
Related : Raspberry

Related : Species From Wikipedia, the free encyclopedia, Rubus Berry Plants

0 ความคิดเห็น:

Post a Comment

 
powered by Rubus Berry Plants